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We present a hybrid atomistic–continuum computational framework for the treat-
ment of dense fluid problems with emphasis on the coupling of molecular dynamics
with continuum (finite element/spectral) methods for problems involving multi-fluid
dynamics in the presence of multi-fluid interfaces. The technique is an extension of
the single-fluid framework already presented by the author. The well-known moving
contact-line problem is used as a validation example. A hybrid solution that employs
molecular dynamics close to the walls where molecular effects are important and
continuum fluid mechanics in the remainder of the domain (far field region) is ob-
tained. A fully molecular solution of the same problem serves as an exact solution.
Various issues related to dense fluid atomistic–continuum techniques are discussed
and contrasted to the already existing but less general dilute gas techniques. Nu-
merical considerations are discussed with particular emphasis on efficiency, and a
formulation that reduces computational cost is proposed.c© 1999 Academic Press
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1. INTRODUCTION

1.1. Background

Despite the enormous success enjoyed by computer modeling at the molecular scale, the
computational profligacy of the various techniques employed does not allow the satisfac-
tory treatment of fully macroscopic problems. As a result, molecular modeling is used in a
“sequential” atomisticthencontinuum fashion, which usually means that continuum treat-
ments use molecular information indirectly in the form of constitutive relations and laws
developed from molecular studies. Researchers [1–7] have realized that hybrid techniques
may, in some cases, alleviate this significant limitation inherent in molecular simulation
techniques.

Hybrid techniques can be very effective in reducing the computational cost of a numerical
solution by limiting the use of the molecular treatment to the regions where it is essential
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(mainly due to the inapplicability of the more conventional continuum techniques), and use
the significantly less computationally expensive continuum techniques in the majority of
the computational domain. The computational gain depends on the size of the continuum
relative to the molecular regions, the size of the overlap region usually used to “interface”
the two descriptions, and the relative speed of the numerical implementations of the two
descriptions. We will limit our discussion here to the development of hybrid techniques
for fluid mechanics, and more specifically we focus on dense fluids that require molecular
dynamics (MD) for their correct treatment. Previous work on hybrid techniques for dense
fluids is limited to the technique by O’Connel and Thompson [5]. Their technique, however,
does not decouple timescales and a simple estimate shows that for a given problem it can
beO(100) times slower than the present technique which decouples timescales. Timescale
decoupling is discussed in Section 1.3. Some discussion on hybrid techniques for solid
mechanics can be found in [1, 6].

When molecular dynamics provides the molecular modeling, only very small regions can
be treated; the potential savings from the use of a hybrid technique in this case can be enor-
mous. However, a problem is amenable to simulation by hybrid techniques only if the region
that requires treament by MD is localized and of small spatial extent such that its simulation
by MD is feasible. An example of such a problem is the moving contact-line problem [8, 9].
It has long been concluded that the correct treatment of the moving contact-line problem
requires modeling at the atomistic scale; the main obstacle to the successful continuum
simulation of this problem is the inability to approximate with continuum equations the
molecular dynamics governing the continuum behavior of the contact line. The author has
shown [10] that the microscale treatment required can be limited to distances of a few molec-
ular diameters from the contact line, thus providing a good example for the application of
a hybrid technique. We will use this problem as an example throughout this paper.

1.2. The Hybrid Coupling Method

The hybrid technique used in this paper is a modified version of the general method
presented in [6] and its origins can be traced to the domain decomposition technique known
as the Schwarz alternating method. Although this technique can be applied to an arbitrary
number of subdomains, in what follows we assume that we have one MD and one continuum
subdomain. Lengthscale decoupling is achieved through the use of an overlap region across
which the continuum and molecular subdomains exchange information; it is, of course,
assumed that both descriptions are valid in that region. The Schwarz technique is inherently a
steady-state solution method; in fact, this is the reason it is able to decouple timescales as well
as lengthscales. Transient problems are treated quasistatically: a series of Schwarz iterations
is performed, one for each time step. Timescale decoupling is discussed in Section 1.3.

Iterative convergence to a (quasi-)steady solution is achieved through an alternating it-
eration betweensteady-statesolutions in the two subdomains. If we denote the continuum
and molecular subdomains asÄcont andÄmol, respectively, with0cont and0mol their respec-
tive boundaries, the iteration proceeds as follows: asteady-statesolution in the continuum
subdomain subject to “external” boundary conditions on0cont excluding(0cont∩Ämol), and
“iterative” boundary conditions on0cont∩Ämol from the previous solution inÄmol provides
new “iterative” boundary conditions onÄcont∩0mol for a new solution inÄmol subject
also to “external” boundary conditions on0mol excluding(0mol∩Äcont). This iteration pro-
cedure continues until the solution in the overlap region is the same in both subdomains
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which means that fluxes (=(transport coefficients)× (gradients)) are matched (under the
assumption of matched transport coefficients in the two subdomains). The first solution in
Äcont can be a guess or an approximate solution if available. Starting from solutions close
to the exact one will, in general, reduce the number of iterations required but the technique
is expected to converge from solutions arbitrarily far from the exact solution [11].

The author has previously [6] pointed out some issues related to a general hybrid MD–
continuum simulation framework: these include the scaling relation between the MD domain
data noise and domain sizes, the accurate imposition of Dirichlet boundary conditions and
the role of the overlap region as a relaxation region for the non-equilibrium distribution
function, and the extension of the Schwarz framework to treat complex fluid mechani-
cal phenomena such as the moving contact-line problem. These issues are revisited and
discussed below.

The first issue is related to the statistical nature of molecular dynamics: the need for
adequate signal-to-noise ratio in every MD simulation usually results in unrealistically
large gradients in the very small simulation domain. This, in turn, sets a limit on the size of
the continuum computational domain since such gradients cannot persist over macroscopic
distances. In other words, although a matching technique can be devised that can couple a
molecular dynamics simulation domain to an arbitrarily large continuum domain, in order
for a problem to be feasible, it would have to exhibit gradients that exceed the value of 107

by usually a few orders of magnitude and decay fast enough into the continuum region so
as not to lead to diverging field variables (for example, a velocity gradient of 109 s−1 over a
distance of 1 m results in a velocity that exceeds the speed of light!). It would seem that this
issue can never be fully addressed, but only alleviated by the use of increased computational
resources, thus seriously limiting the applicability of any hybrid technique irrespective of
its ability to couple the various subdomains successflully. The author has indicated in [6] the
use of dynamical similarity to overcome this problem: in situations that non-dimensional
governing parameters do not place conflicting requirements, the molecular simulation can
be performed on a dynamically and geometrically similar system with smaller characteristic
dimensions (d) and higher characteristic field variables scales, such as velocity (v), to give
a higher signal-to-noise ratio. As an example, consider a flow which is characterised by
the Reynolds number (Re= ρvd/µ) only: this is an ideal situation because Re can be kept
constant by increasingv and at the same time decreasingd, thus increasing the gradients (g)
in the flow proportionally to the square of the characteristic velocity (g∼ v/d∝ v2). Care
must be taken in ensuring that this procedure does not change the relative importance of
other controlling parameters which would lead to introduction of effects that are not present
in the original model, such as viscous heating and shear thinning.

The second issue arises because of the non-local nature of fluxes (shear stress, heat flux)
which as such are almost impossible to impose in a molecular dynamics simulation. We
expect that successful matching of two solutions in two different subdomains implies the
matching of these fluxes across the subdomain boundaries. This was most often cited as
the major difficulty in obtaining a hybrid MD–continuum simulation technique [12]. The
hybrid solution framework proposed by the author [6] overcomes this problem by providing
an iterative technique that ensures that fluxes are correctly matched through the imposition
of Dirichlet boundary conditions which are significantly easier to impose. Although the
author has reported [6] some error resulting from the method used to impose the Dirichlet
boundary conditions in MD simulations, this issue is not as important and it is the author’s
belief that it can be reasonably easily rectified.
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The hybrid technique used here exhibits favorable convergence characteristics; the con-
vergence rate depends primarily on the size of the overlap region relative to the smallest
of the subdomains. As a result, an overlap region of the size of the molecular only region
(Ämol excludingÄmol∩Äcont) leads to a fast converging iteration irrespective of the size of
the continuum domain which can be up to a few orders of magnitude larger (subject to the
first issue discussed above). Convergence can be proven for elliptic problems [11], and as
shown in Section 4, more efficient algorithms can be designed based on these convergence
characteristics.

1.3. Timescale Decoupling and Transient Problems

The Schwarz alternating method was chosen for its ability to decouple timescales as well
as lengthscales. The majority of previous work has been focused on the coupling of the
direct simulation Monte Carlo (DSMC) to a continuum description. This choice, however,
does not bring to surface two important obstacles in the way of obtaining a fully general
hybrid description: the first obstacle is the imposition of fluxes which is not an issue in the
DSMC (kinetic theory) framework because of the absence of interaction between molecules;
the second obstacle is the decoupling of timescales, which is not as serious a limitation in
the DSMC case due to the similarity of the timescales between DSMC and continuum
formulations. It does, however, set an upper limit in the maximum scale separation that can
be achieved even in the DSMC–continuum case.

More specifically, the molecular dynamics integration timestep(τMD) is a small fraction
of the molecular collision frequency(τc). These characteristic times are much shorter than
the hydrodynamic timescale of any system(τh), even for systems with a very small number
of molecules. As a result, macroscopic phenomena evolving on macroscopic timescales
cannot be captured byany technique that has an integration timescale of the order ofτMD

(such as a hybrid technique that does not decouple timescales), because of the enormous
number of time steps required. As an example, consider a three-dimensional system of
characteristic sizel ∼ 10−6 m. The hydrodynamic scale for this system (assuming incom-
pressible, low-speed flow) isτh∼ τd∼ l 2/ν; here we have assumed that the Reynolds number
Re= τd/τi = vl/ν is of order one, whereτd is the momentum diffusion timescale,τi is the
inertial timescale,ν is the kinematic viscosity, andv is a characteristic velocity. If we take
ν∼ 10−7 m2/s, it follows thatτh∼ 10−5 s or equivalentlyτh∼ 109τMD, which is already
out of reach of most computers, even if we assume that through a hybrid technique we are
only required to cover a small region of the original domain by MD (saylMD ∼ 10−8 m).
In DSMC the integration timescaleτDSMCÀ τMD; in a sense DSMC achieves a form of
timescale decoupling by “coarse-graining” the molecular description up to the level of the
hydrodynamic regime. As a result, the above limitations are less restrictive for the case
of a DSMC–continuum technique. Furthermore, the computational efficiency of DSMC
(compared to MD) results in hybrid formulations which can approach the micrometer scale
[7] before the separation of timescales seriously affects them.

Timescale decoupling is achieved here by treating steady-state problems in an implicit
sense: the steady solution is obtained by an iteration sequence that has no temporal interpre-
tation (much like a Gauss–Seidel iteration) and takesO(10) steps. Time-varying problems
require one Schwarz iteration per time step during which the solution is treated as steady.
Using our example above, the numerical integration of a problem with characteristic
timescaleτh∼ 10−5 s will require an integration timescaledτ ∼ 10−7 s. This, however,



HYBRID ATOMISTIC–CONTINUUM FORMULATIONS 249

is very long compared to the characteristic time of the MD regionτhMD ∼ l 2
MD/ν∼ 10−9 s

and hence a quasistatic treatment of the molecular region is justified. The technique pre-
sented is thus not limited to steady-state problems.

1.4. Paper Overview

As remarked above, this paper focuses on the extension of the hybrid technique to treat
a realistic example that is both a challenging test for the hybrid framework and of practical
importance and interest. The description of the moving contact-line example problem, the
molecular simulation of the same problem which provides the exact solution for comparison
purposes but also provides the molecular part of the hybrid solution, and the continuum
simulation technique used are presented in the next section; the hybrid formulation and
its results are presented in Section 3, various numerical considerations are discussed in
Section 4, and some concluding remarks are given in Section 5.

2. THE MOVING CONTACT-LINE PROBLEM

2.1. Problem Description

In this paper we study a simple version of the moving contact-line problem. Consider first
two static immiscible but otherwise identical fluids (same density(ρ) and viscosity(µ)) in
a two-dimensional channel: the meniscus that separates the two fluids will adopt a shape
that balances the capillary stresses with the pressure difference between the two fluids,
subject to the (static) contact-angle boundary condition. We next permit the two fluids to
move. In particular, we consider the problem in which one fluid displaces the other fluid
at a constant interface (average fluid displacement) speedU . This movement is a result of
boundary forcing which takes place at the expense of a pressure drop along the direction of
motion, or a result of an external field (such as gravity) acting along the direction of motion.
The meniscus shape will now further distort due to the stresses created by the flowing fluid;
the interface shape is an unknown and must be determined with the flow field by solution
of a non-linear set of coupled partial differential equations. The problems of interest here
are limited to the case of small Reynolds number, Re≡ ρU H/µ¿ 1, and small capillary
number, Ca≡µU/γ <0.1; hereρ is the density,H is the channel half-width,µ is the
dynamic viscosity, andγ is the assumed-constant coefficient of surface tension between
the two fluids.

It is convenient to study this problem in the reference frame of the moving interface (see
Fig. 1): in this reference frame the interface does not move, and the walls of the channel
move with speed−U (whereU is the speed with which the interface advances in the labo-
ratory frame) in the streamwise direction.

The numerical solution of this problem presents various challenges, both numerical and
theoretical, mainly due to the insufficient understanding of the dynamics of the contact point
(point H in Fig. 1). The conflicting requirements of the no-slip condition, which requires
the fluid in contact with the wall to acquire the wall velocity (−U ) in the direction along
the wall, and the so-called kinematic condition, which requires no net mass flux through
a two-fluid interface and thus zero fluid velocity in the streamwise direction at the contact
point, leads to a logarithmic stress singularity at the contact point [8]. This singularity is
relieved in numerical treatments through the introduction of slip models with adjustable
parameters that are, however, ad hoc. The value of the contact angleθ at H (dynamic in the
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FIG. 1. Schematic of the moving contact-line example problem. We use0 to denote the various boundaries
of the system. The system is symmetric about the channel centerline0AB. The two-fluid interface (0f ) is denoted
GH, where H is the contact point (two-dimensional projection of the contact line). The two fluid domains are
denotedÄA andÄB.

case of a moving wall) as a function of the wall velocity is another unknown. This angle is
required as a boundary condition for the integration of the governing equations of motion.
Agreement with experiments can be obtained by using the value of the dynamic contact
angle and the slip parameters as adjustable parameters. This, however, is not satisfactory
from a theoretical point of view which requires a model of the contact-line dynamics to
be predictive. The complex molecular-kinetic contact-line dynamics can be adequately
captured by molecular simulations [9, 10, 12–14]. We thus propose a hybrid solution of
the problem with the region close to the walls, region L′U′CD in Fig. 2, being treated by
molecular dynamics, and region ABU′′L′′ in Fig. 2 being treated by continuum theory. Note
that L′U′U′′L′′ is an overlap region where both descriptions are assumed to be valid.

The objective of this study is the evaluation of the ability of the hybrid technique proposed
in [6] to capture the complex multi-dimensional dynamics of multi-fluid flows. The contact-
line problem is a very stringent test for our technique; the resulting flow field is extremely
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FIG. 2. Hybrid formulation geometry showing the molecular region boundary0mol= L ′U′ and the continuum
region boundary0cont= L ′′U′′.

complex and requires the ability to simulate flows with a component normal to the interface
between the two subdomains (molecular and continuum). The results of our hybrid solution
technique are compared to a fully molecular solution on the same geometry which is taken
to be the exact solution. The computational domain size is small enough so that it can be
treated by molecular dynamics in its entirety. As a result the hybrid geometry involves
continuum regions that are of size comparable to the molecular regions, and thus no real
computational gain is obtained.

2.2. Molecular Dynamics Simulations

We describe here the MD simulation of the immiscible fluid displacement problem. The
channel geometry (lengthL and width 2H ) is shown in Fig. 3. Note that in the molec-
ular simulations the symmetry about the channel centerline is utilized in a different way
compared to continuum techniques because symmetry boundary conditions are difficult to
impose in MD simulations. The simulation domain covers the full channel width and the
extra simulation cost is offset by the number of statistical data obtained. Additionally, again
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FIG. 3. Problem geometry for the MD simulation.rc is the interaction cutoff length. Wall molecules are
denoted by×, fluid A molecules by open circles, and fluid B molecules by solid circles (not to correct density for
clarity).

for reasons of computational convenience, periodic boundary conditions are applied in the
streamwise direction, which is allowable because of the interchangeability of fluids A and B.

Unless otherwise stated, all quantities will be expressed in reduced units usingσ = σAr =
3.4 Å for length,m=mAr = 40 amu for mass,ε/kb= εAr/kb= 119.8◦K for temperature,
andτ = (mσ 2/48ε)1/2= 3.112× 10−13 s for time. Herekb is Boltzmann’s constant,σAr

andεAr are the parameters of the Lennard–Jones (LJ) potential for argon [15],mAr is the
mass of the argon atom, andτ is the characteristic time for argon. The interaction potential
was truncated at the rather conservative cutoff lengthrc= 3σ . The simulation box is a fully
periodic MD domain of size(L × D×W)= (57.05σ × 5.56σ × 15.29σ) in thex, y, and
z directions, respectively.

The molecular model for the two fluids is the same as in [9, 14]; the argon molecules are
divided into two subspecies: subspecies A and B. These two subspecies (1280 molecules
each) are completely identical because they have the same self-interactions and interactions
with the walls of the system; they are, however, immiscible because the potential interaction
between them is repulsive. More specifically, the potential used in this study,

Vi j (r ) = 4εi j
[
(σi j /r )

12− δ(σi j /r )
6
]
, (1)

wherer is the separation of the two interacting molecules, is a modified [9] form of the
well-known Lennard–Jones potential (δ= 1). For the interaction between subspecies A and
B, δ=−1; for all other pairs of interactionsδ= 1.
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The above fluid characteristics were “constructed” for reasons of computational simplic-
ity but also ease of matching of the molecular system properties with the continuum system
properties. In continuum terms the behavior of the above molecular system is equivalent to
that of two fluids with the same density and viscosity (equal to bulk values for liquid argon);
the fluids, however, are immiscible with a surface tension coefficientγ which can be calcu-
lated from molecular techniques: at the temperature (T = 1.4) and density (ρ= 0.81σ−3)
of the simulation,γ = 3.9± 0.2ε/σ 2 [14]. More importantly, the two fluids interact with
the two bounding walls in exactly the same way, and therefore the static contact angle, by
symmetry arguments, has to equal 90◦.

The fairly repulsive potential interaction between the two fluids results in a gap of the
order of 1σ between the two fluids. More realistic potentials, or alternatively the simulation
of a fluid and its vapor, would result in significantly more diffuse interfaces that would
require modeling assumptions for the exact definition of their locations. We thus preferred
this slightly artificial interaction which we believe does not affect the generality of our
conclusions since the surface tension associated with it can be calculated.

Each of the two parallel, isothermal walls bounding the fluids is modeled by 600 wall
molecules arranged in anfcc two-layer structure in thex–y plane. The wall density,ρw, is
equal to the fluid density,ρ. The outer of the two layers is constrained to move with velocity
−U in thex direction and the molecules composing it do not have thermal velocities. The
inner layer obeys the usual Newtonian equations of motion but its temperature is rescaled
in order for it to act as an energy sink and allow the simulation to reach a steady non-
equilibrium state by effectively imposing temperature boundary conditions on the fluid
argon. Similar models have been shown [13] to adequately capture the dynamics of wall–
fluid interactions. The combined thickness (along thezdirection) of the two walls is greater
than the interaction potential cutoff (rc) such that

2H −W > rc,

and thus the fluid molecules do not see their images across the walls (see Fig. 3). The
wall (W) and wall–fluid (WF) potential parameters aremW= 2mAr, εW= 5εAr, σW= σAr,
εWF= 1.03εAr, andσWF= 1.03σAr. They do not represent any known solid material. They
were chosen as a good compromise between the requirements of minimum number of wall
molecules, a melting point that exceeds the highest temperature encountered during the
simulation, minimum layering of the argon molecules close to the walls, and minimum slip
length. The width of the channel(H) is determined by the average location of the first layer
of wall molecules (Fig. 3). However, the volume occupied by the fluid is less due to the
finite repulsive core of the interaction potential between the walls and the fluid. We denote
the thickness of the “fluid region” by 2B, whereH = 1.16B.

After an equilibration period of 640τ , samples are taken for a further 2720τ . The flow
field is recovered by averaging the instantaneous molecular velocities in rectangular bins
spanning thex–z plane. The size of the bins is 1.43σ along thex direction and 1.53σ along
thez direction. The resulting statistical errors for the velocity are expected to be less than
0.002σ/τ .

The flow field (Fig. 4) is generated by forcing the fluid into the Poiseuille parabolic
profile far away from the two-fluid interface. We have ensured that the distance between
the two two-fluid interfaces is greater than 5H(L > 10H), such that the assumption of a
Poiseuille profile is valid; various studies [16, 17] have verified that the flow field relaxes to
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FIG. 4. Flow field for Poiseuille configuration. Both walls move with velocity−U =−0.017σ/τ .

the above profile at distances greater than 2.5H from the interface. The Poiseuille profile
is a zero-mass-flux profile because the simulation takes place in the reference frame of the
moving interface. The velocity profile was imposed through the method developed in [6]
and is discussed in Section 2.2.1.

Due to the periodic boundary conditions in the streamwise direction there are two two-
fluid interfaces; in one, fluid A advances into fluid B and in the other, fluid B advances into
fluid A. Because the gap between the two fluids is not constant but varies as a function of
z, we defined each two-fluid interface using two lines: each line represents the envelope of
the average extreme excursions of one fluid in the streamwise direction. For example, at the
interface where fluid A is advancing into fluid B, one line represents the mean maximum
excursion of fluid A and the other line represents the mean minimum excursion of fluid B.
In Fig. 5 we retain both lines to indicate the molecular interface shape, but we reduce their
gap at the centerline of the channel to zero, to facilitate comparison of both their relative
curvatures as well as with the continuum results. Note that the two lines diverge close to

FIG. 5. The two-fluid interface shapes for different Ca. Advancing fluid fronts are shown as solid lines and
receding fluid fronts as dashed lines. The channel centerline is atz= 0.
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the wall, indicating that the accommodation of the shearing from the wall requires the gap
between the two fluids to increase. This is clearly a molecular phenomenon that cannot be
captured by a continuum simulation.

2.2.1. Boundary Condition Imposition.The imposition of boundary conditions on MD
simulations is essential to the success of a hybrid technique. Although boundary conditions
are only required on0mol in the hybrid case, we used our boundary condition imposition
technique for forcing the parabolic velocity profile in the streamwise direction for both the
fully molecular and the hybrid computations. In the case of the fully molecular solution,
we ensured that the flow field is consistent with previous reports of similar work, by com-
paring the results of the above method with results obtained using gravity as the driving
force for the fluid motion [13]. We also performed “in-house” comparisons using gravity as
the driving force for the flow: the results of the two simulation methods for the same wall
velocity (U ) are indistinguishable within the statistical accuracy of the simulations [18].

In the case of the imposition of the Poiseuille profile across the channel width the tech-
nique utilizes thin (thickness1∼ 1σ ) regions, denoted momentum reservoirs (Fig. 6),
surrounding the Dirichlet boundaries in which the velocity of the molecule is set to the

FIG. 6. Flow field imposition method. Particles in reservoirs RA and RB of thickness1 are forced to a
velocity boundary conditionu= vbc depending on their positionz. The averagēu is equal to zero (no net mass
flux) in this particular problem.
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requisite boundary condition through the use of biased Maxwellian distributions [18]

f (v) =
(

m

2πkbTbc(x)

)3/2

exp

(
− (v− vbc(x))2

2kbTbc(x)

)
. (2)

Herevbc(x) is the requisite velocity boundary condition,Tbc(x) is the requisite temperature
boundary condition. These regions have a finite thickness, so that the boundary condition
imposition provides information about the local field variable gradients in addition to the
information about the local field variables; this addition partially offsets the error associated
with the use of the approximate Maxwellian distribution due to the incomplete knowledge
of the dense fluid non-equilibrium distribution function. The use of the dense hard sphere
Enskog correction [19] is under investigation.

The technique also requires regions called particle reservoirs through which the fluid can
flow to and from the various boundary regions such that the correct feed of molecules is
supplied to the simulation region in order for mass conservation to be honored. Any closed
(or periodic) extension (for dicussion of limitations see [18]) of the simulation domain can
serve as a particle reservoir.

The periodicity of the solution renders the particle reservoirs unnecessary. This is better
illustrated in Fig. 6: the complete domain can be seen as two simulation domains (as
described in Fig. 2) joined back to back, taking advantage of the interchangeability of fluid
A and B to dispense with the particle reservoir. Momentum reservoir RA, for example,
induces inflow to the top half of the simulation, but also outflow to the bottom half of the
simulation; subsequently, each simulation half can be viewed as the particle reservoir of the
complementary remaining half.

2.3. The Finite Element Technique

The continuum part of the hybrid solution comes from an isoparametric finite element
discretization of the Stokes equations [16]

∂τi j

∂xj
= 0, (3)

∂ui

∂xi
= 0, (4)

which are the appropriate low-speed (ReCa¿ 1, Re= ρU H/µ) limits of the governing
Navier–Stokes equations [21]. Hereτi j is the stress tensor andi = 1, 2, 3 corresponds to
directionsx, y, andz, respectively. The simulation was performed in the Stokes limit since
the Weber number (We=ReCa= ρU2H/γ ) that measures the effect of the inertia forces
with respect to the capillary forces was always less than 0.02. Previous work [20, 21],
both analytical and computational, indicates that for a Weber number of 0.01 the error in
neglecting the inertial terms is less than 1%. Recall that the error associated with the MD
procedure is estimated to be 5–10%.

The solution of this problem is challenging because the two-fluid interface shape couples
non-linearly to the flow field through the following stress balance:

n̂i
(
τi j |0B

f
− τi j |0A

f

)
n̂ j = γ κ on0 f , (5)

t̂ i
(
τi j |0B

f
− τi j |0A

f

)
n̂ j = 0 on0 f . (6)
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Here n̂i and t̂ i are the right-handed outward unit normal and tangent on the interface
0f , 0B

f =0f ∩ÄB and0A
f =0f ∩ÄA, andκ is the curvature. The variational form of this

boundary condition, obtained by Ruschak [22], has been used here to obtain a variationally
consistent finite element approximation.

The remaining boundary conditions are

dxs(0)

ds
= 0, (7)

dxs(S)

ds
= cosθ (8)

for the contact angle and

uz = 0 on0AB, 0AL ′′ , 0BU′′ (9)

ux = Ug, on0AL ′′ , 0BU′′ , (10)

σxz = 0 on0AB, (11)

ux = (uMD)x, on0cont (12)

uz = (uMD)z, on0cont (13)

for the flow field. Heres is the arc length coordinate along0f such thats= 0 ands= S
correspond to points G and H′′ on 0f , respectively;0 is the union of0AB, 0BU′′ , 0U′′L′′ ,
and0AL ′′ ; xs(z) is the two-fluid interface position as a function ofz; uMD is the Dirichlet
data from the molecular dynamics simulation; andg is the parabolic zero-mass-flux profile,
g( z

H )= 1
2 − 3

2(
z
H )

2.
An algorithm that makes use of the importance of surface tension for Ca< 0.1 to converge

rapidly to the steady-state solution [18] was also developed. The algorithm is based on a
modified form of Eq. (5),

n̂i
(
τi j |0B

f
− τi j |0A

f

)
n̂ j − γ κ = γ κ(1x) on0f, (14)

whereκ(1x) is the curvature correction required to balance (5). This equation takes ad-
vantage of the fact that only the correct steady-state solution can satisfy both conditions
required at the interface, namely (5) which is the normal momentum balance, and

n̂i ui = 0, (15)

which is also known as the kinematic condition.
Based on this observation [16], the following iterative procedure can be applied: (i) a guess

interface shape is assumed; (ii) the Stokes problem subject to the boundary conditions given
above and the kinematic condition on the fixed interface shape provides a flow field solution;
(iii) the residual of (5) gives a correction displacement (1x(z)) by solving (14); and (iv) the
interface is updated to the new shape based on the correction displacement1x(z). Steps
(ii)–(iv) are repeated to convergence. For Ca< 0.1 this procedure converges to the correct
solution in less than five iterations. The full details of the algorithm, the solvability issues
resulting from the application of the kinematic condition, and the variational formulations
can be found in [18].
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The continuum solver requires an angle boundary condition for the point where the two-
fluid interface meets0cont (point H′′); it, of course, requires one at point G which is always
90◦ by symmetry. The angle boundary conditions are of the natural form, and are a result
of the weak formulation of the governing equations [18]. The angle at point H′′ is evaluated
by averaging the shape of the interface in the molecular solution and extracting its slope
at H′′.

The discretization uses an isoparametric finite element solver with a structured mesh that
is refined to mesh sizes at least one order of magnitude smaller than the slip length close
to point H′′ for complete resolution of the angle imposition. We have used the Crouzeix–
Raviart elements, which can correctly capture the pressure discontinuity at the two-fluid
interface because they allow pressure discontinuities across element edges. More details on
the finite element methodology can be found in [18].

3. HYBRID SOLUTION

3.1. Formulation

In the hybrid solution presented in this section we use the ingredients presented in
Sections 2.2 and 2.3; namely, we use MD to describe region L′U′CD and continuum fluid
mechanics (finite elements) to describe region ABU′′L′′. We compare this solution to the
fully molecular solution of Section 2.2.

The channel dimensions favored the extension of the molecular region to the full channel
length (up to0BC and0AD); slip was important in approximately 50% of the channel length
which was large enough to make the addition of a continuum region in the streamwise
direction impracticable. This, of course, will not be the case for macroscopic problems in
which slip is limited to very small fractions of the channel length.

Our approach to this problem is an extension of the Schwarz technique presented in [6]
and Section 1.2: the continuum solution from the previous iteration provides new boundary
conditions for the molecular simulation on the boundary of the latter (L′U′ ≡0mol), which
lies well within the continuum domain (thickness of the overlap region= 0.2B); the new
molecular solution in turn provides a new set of boundary conditions for the continuum
simulation on the boundary of the latter (L′′U′′ ≡0cont), which lies inside the molecular
domain. This completes one full iteration. Figure 7 shows the molecular data on0cont which
serve as boundary conditions for the continuum simulation. Because of the statistical nature
of the MD data the velocity profiles are smoothed before being passed to the continuum
simulation. The smoothing is achieved through a low-order (fifth-order) fit. The simulation
is isothermal and hence the energy equation is not considered in the continuum domain;
the boundary data exchanged are limited to flow velocities and the angle of the interface
at H′′ which enters the continuum calculation as a natural boundary condition [18]. The
molecular calculation does not require angle information. Convergence obtains when the
two solutions are identical throughout the overlap region.

The velocity boundary conditions in the MD simulations are imposed on0mol, 0U′C, and
0L′D using momentum reservoirs discussed in Section 2.2.1. Region ABU′L′ is used as a
particle reservoir [18]; that is, during the molecular simulations it is part of the simulation
domain although the solution in this region is now a complement of the molecular solution of
interest in region L′U′CD. Region ABU′L′ ensures that the right number of molecules of type
A are injected into region L′H′HD through face L′H′ to satisfy the inflow boundary condition
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FIG. 7. Molecular data on0cont is used as boundary conditions for the continuum simulation. The solid line
represents the actual data, and the dashed line, the fit used to impose the data. Angle information at point H′′ is
also used.

on this face, and similarly the right number of molecules of type B are absorbed from region
H′U′CH to satisfy the outflow boundary condition on face H′U′. To prove this, recall that in
steady elliptic incompressible problems (where the Mach number is negligibly small com-
pared to 1) the net mass flux through any closed region is zero. The imposition of zero-net-
mass-flux boundary conditions thus forces the correct “particle feed flow field” in the particle
reservoirs with inflow/outflow regions in contact with the respective outflow/inflow regions
of the simulation region, since the individual net mass flux both of the reservoir regions and
of the simulation region is zero. In the above example the flux through face H′U′ absorbed
by the particle region is balanced (to achieve zero net mass flux) by the outflow through face
BU′; a close examination of the flow field in Fig. 4 indicates that the outflow through face BU′

returns (due to the periodicity of the solution) to the simulation region through face U′C to
complete the no-net-mass-flux requirement for the simulation region.

The normal velocity profiles were corrected for mass continuity before being passed to the
continuum domain by requiring that the net mass flux of each fluid through the continuum
domain equals zero. For example, for fluid A we require

(
uL′′H′′

MD

)
z
= (uL′′H′′

MD

)
z
−
∫

L′′H′′
(
uL′′H′′

MD

)
z
dl − ∫AL ′′ Ug dl∫

AL ′′ dl
. (16)

As in Section 2.3,(uMD)z denotes the normal boundary data from the molecular dynamics
simulation on the portion of0cont indicated, andUgdenotes the zero-net-mass-flux boundary
condition on sections0BC and0AD.
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FIG. 8. Comparison of the fully molecular (dashed) and hybrid (solid) interface shape for Ca= 0.059.

3.2. Results

We now present the results of the hybrid formulation for a capillary number of Ca= 0.059.
In this problem we have chosen the fully continuum solution for Ca= 0.059 presented in
Fig. 5 as the initial guess solution. This choice significantly reduces the computational
effort required since the starting solution is close to the exact (fully molecular) solution
and therefore a few iterations will suffice to obtain complete convergence. The issue of
convergence of the modified Schwarz technique from initial guess solutions arbitrarily far
from the exact solution is left as the subject of future work.

Figure 8 shows the results obtained after two iterations. We can see that the results are in
very good agreement with the corresponding fully molecular results. Note that the hybrid
interface shape consists of a single line in the continuum subdomain up to point H′′ and two
lines in the molecular domain. The molecular solution and the molecular part of the hybrid
solution consist of two lines as discussed in Section 2.2.

4. EFFICIENCY CONSIDERATIONS

The computational work associated with a hybrid solution can, to a very good approxi-
mation, be attributed to the molecular part; for each iteration the continuum iterate typically
takes two orders of magnitude less computational time than the molecular iterate. In what
follows we will neglect the computational cost of the continuum solutions in order to sim-
plify our investigation, which aims at minimizing the computational cost of the complete
hybrid solution.

Convergence can be proven for a large class of problems when both subdomains are
treated by continuum methods [11]. In particular, elliptic problems, such as those treated
in this paper, are amenable to analysis which yields useful results: convergence exhibits a
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power law behavior of the form

εn+1 = K εn, (17)

whereK is a positive constant (0< K < 1) which governs the convergence rate andε is the
error in the appropriate norm [11] andn is the iteration number. The constantK depends
on the particular problem at hand through the governing operator eigenvalues [11], but also
on the size of the overlap region: the larger the overlap region, the smallerK is, and hence
the faster the convergence.

Convergence should also be obtained for a hybrid description if the continuum and
molecular models are equivalent in the overlap region. However, additional “steady-state”
errors will arise in the hybrid case due to, first, discrepancies in the transport coefficients
in the two subdomains, second, noise introduced by MD statistical fluctuations, and third,
smoothing of the MD data prior to imposition of the boundary conditions on the continuum
iterate. The convergenceratemay also be affected by these new sources of error.

If we neglect the continuum cost of the solution we can easily express the total cost (or
work W) of the hybrid solution as

W = work per MD time step
n0∑

i=1

Ni , (18)

wheren0 is the total number of iterations andNi is the number of molecular dynamics time
steps run at iterationi . The expected error in a field quantity from the MD iteratei is given by

εi = A√
Ni
, (19)

where A is a constant (for a given simulation) that can easily be estimated [15, 18]. We
would like to know how the error in the initial stages of the iteration propagates, accu-
mulates, and affects the final error present at convergence; if the effect of the error decays
sufficiently fast we can design a “schedule” for the number of MD time steps as a function of
the iteration number such that initial MD simulations are run to low accuracy, thus reducing
the computational cost.

Under the above assumption of Gaussian statistics we model the convergence procedure
as a stochastically forced decay process leading to a governing equation [18]

εn+1 = K εn + εn, (20)

which has the general solution

εn =
n−1∑
j=0

K n−1− j ε j + K nε0. (21)

We will now look for the error behavior as a function of the iteration number. We introduce
statistics in an ensemble sense, that is,

εn = lim
M→∞

1

M

M∑
k=1

εn
k , (22)

and

Var(εn) = lim
M→∞

1

M

M∑
k=1

(
εn

k − εn
)2
, (23)
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wherek= 1, . . . ,M→∞ are the different realizations of similar systems characterized by
(20). Using

εn = lim
M→∞

1

M

M∑
k=1

εn
k = 0 ∀n, (24)

Var(εn) = lim
M→∞

1

M

M∑
k=1

(
εn

k

)2 = A2

Nn
, (25)

and

Var(ε0) = 0, (26)

it can easily be shown that

Var(εn0) =
n0−1∑
j=0

K 2(n−1− j )Var(ε j ) =
n0−1∑
j=0

K 2(n−1− j ) A2

Nj
. (27)

Also note that we have assumed that the cross-correlation terms in the ensemble sense
(limM→∞ 1

M

∑M
k=1 ε

n
k ε

n
k+ j , j 6= 0) go to zero.

We have verified the validity of the above equations with numerical simulations. An
ensemble of 1000 members all obeying the difference equation (20) was simulated using
a Gaussian generator to model the stochastic error term. The results (see [18]) verify the
correctness of the equations derived above: the mean value of the error decays as in the
unforced case, and the expected error (associated with one standard deviation) is given
by (27).

We therefore seek the optimal scheduling of the number of molecular dynamics time steps
as a function of the iteration number(n), by also allowing the total number of iterations
(n0) to vary, subject to the constraint of a desired simulation accuracy. We can pose the
constraint as

K n0ε0+ σ(εn0) = B, (28)

where in doing so, we have associated one standard deviation of the stochastic part ofεn0

to the expected error and added that to the error at then0 iteration due to the deterministic
part (K n0ε0), and required that it equalB.

We form the Lagrangian

L =
n0∑
j=1

Nj + λ
K n0ε0+

√√√√n0−1∑
j=0

K 2(n−1− j ) A2

Nj
− B

 (29)

which can be differentiated for the determination of the extrema. These are obtained for

Nj = A2

(B− K n0ε0)2

K−1− K n0−1

K−1− 1
K n0−1− j , (30)

that is, for a givenn0 the optimum work is achieved forNj ∝ K n0−1− j .
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We will now seek the optimumn0 by substituting the expression we have found forNj

into (18) and finding for whichn0 a minimum is obtained. The expression for the cost is

W = A2

(B− K n0ε0)2

(
K−1− K n0−1

K−1− 1

)2

. (31)

Note that this expression is singular forB= K n0ε0 because an infinite number of time
steps are required for the stochastic term to go to zero such thatB is balanced only by the
initial condition decay term. We can look for minima forn0> ln B/ln K (ε0= 1) because
the branchn0< ln B/ln K corresponds to the negative value of the square root in (29) and
represents the case for which(B− K n0ε0)<0. For n0> ln B/ln K , W is monotonically
decreasing and this indicates that the optimum is obtained forn0→∞.

Since an infinite number of iterations is impossible, we show here that this infinity can
be replaced by a suitably large number with a very small effect on the work savings.
We illustrate this with a numerical example: usingB= 0.3, ε0= 1, K = 0.1, and A= 1
we needn0= 25 for σ = const.= 0.1. This translates to a total work ofW= 2500 (in
arbitrary units). Using the scheme derived above (30) withn0= 81 we find that the error
decays to the target value of 0.3, but the work is nowW= 1112.1. Additionally we can
use (31) to findW(n0→∞)= 1111.1 which shows that less than 0.1% is lost by taking
n0= 81, but also that a factor of 2.5 in savings is obtained through the use of the optimal
scheduling technique. Figure 9 shows numerical results obtained by a stochastic simulation;
the results verify the theoretical predictions of (30). The work was also evaluated directly

FIG. 9. Numerical simulation of (20) subject to the scheduling of (30) withB= 0.3, ε0= 1, K = 0.1, A= 1,
andn0= 81. The results are ensemble (1000 members) averaged andn is the iteration number. The solid line
shows thatεn decays like the unforced case, whereas the dashed lines showεn± σ(εn). Panel (a) shows the full
results (n= 0–100), and Panel (b) focuses (n= 60–100) on the crossover(B= K n0ε0+ σ(εn0)) atn= n0= 81.
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from the stochastic simulation and found to equal the theoretical value ofW= 1112.1.
Further numerical experiments indicate that asB→ 0 this scheduling technique becomes
more effective with gains exceeding the value of 3.

5. CONCLUDING REMARKS

From the results of Section 3 we can conclude that the hybrid technique developed can
capture the dynamics of complex multi-fluid fluid mechanical phenomena. Our current
results indicate that the modified Schwarz method for two fluids converges from initial
conditions close to the final result. Future work includes further simulations to establish
the (expected) unconditional convergence of the iteration from arbitrary initial interface
shapes.

Additional work is required for the development of a more accurate boundary condition
imposition technique as this ultimately limits the accuracy of the results of a hybrid simu-
lation. In one-dimensional problems it can be shown [18] that the error due to the boundary
condition imposition is suppressed by a factor monotonically increasing with the width of
the overlap region. Unfortunately no such result exists for the two-dimensional case, and
the results of [6] suggest that the boundary condition error might be amplified and result in
inaccurate hybrid solutions. In this work the presence of the full channel minimizes the error
in the final solution; despite this further work is required to reduce the error in imposing
general boundary conditions in MD simulations.

Figure 7 shows that the molecular velocity data are appreciably noisy. The solution
for the interface shape is fairly insensitive to this noise, as the good agreement of the
hybrid result with the fully molecular solution indicates. There may be, however, classes of
problems that are not so insensitive and hence, more attention needs to be paid to the effect
of the statistical nature of MD to hybrid solution frameworks. As discussed in Section 4,
because of the statistical nature of MD the convergence of the iteration procedure needs
to be examined in a statistical framework. The accuracy and the convergence rate of the
hybrid solution may be adversely affected; the use of an elementary smoothing technique
(low-order fit) has been shown to work fairly effectively but its full effect is not completely
understood.

The simulation presented in this work was at the molecular scale; the continuum domain
was of the same size (approximately) as the molecular domain. This approach was preferred
over a solution where the continuum domain would be substatially larger than the molec-
ular domain because at this stage we were interested in a direct comparison between the
hybrid solution and the fully molecular solution that yields important information about the
accuracy of the hybrid technique. In fact, the molecular model used here has no real-world
analogue and hence no meaningful comparison to any macroscopic solution or experimen-
tal data can be expected. Additionally, the extension to macroscopic problems presents no
additional challenges, but rather some improvements of the current technique that can be
reasonably easily effected. A full macroscopic simulation is currently under investigation.
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