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We present a hybrid atomistic—continuum computational framework for the treat-
ment of dense fluid problems with emphasis on the coupling of molecular dynamics
with continuum (finite element/spectral) methods for problems involving multi-fluid
dynamics in the presence of multi-fluid interfaces. The technique is an extension of
the single-fluid framework already presented by the author. The well-known moving
contact-line problem is used as a validation example. A hybrid solution that employs
molecular dynamics close to the walls where molecular effects are important and
continuum fluid mechanics in the remainder of the domain (far field region) is ob-
tained. A fully molecular solution of the same problem serves as an exact solution.
Various issues related to dense fluid atomistic—continuum techniques are discussed
and contrasted to the already existing but less general dilute gas techniques. Nu-
merical considerations are discussed with particular emphasis on efficiency, and a
formulation that reduces computational cost is proposeel 1999 Academic Press

Key Wordshybrid formulation; molecular dynamics; coupling.

1. INTRODUCTION

1.1. Background

Despite the enormous success enjoyed by computer modeling at the molecular sca
computational profligacy of the various techniques employed does not allow the sati
tory treatment of fully macroscopic problems. As a result, molecular modeling is used
“sequential” atomistithencontinuum fashion, which usually means that continuum tre
ments use molecular information indirectly in the form of constitutive relations and I
developed from molecular studies. Researchers [1-7] have realized that hybrid techr
may, in some cases, alleviate this significant limitation inherent in molecular simula
techniques.

Hybrid techniques can be very effective in reducing the computational cost of a nume
solution by limiting the use of the molecular treatment to the regions where it is esse
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(mainly due to the inapplicability of the more conventional continuum techniques), and t
the significantly less computationally expensive continuum techniques in the majority
the computational domain. The computational gain depends on the size of the contint
relative to the molecular regions, the size of the overlap region usually used to “interfa
the two descriptions, and the relative speed of the numerical implementations of the
descriptions. We will limit our discussion here to the development of hybrid techniqu
for fluid mechanics, and more specifically we focus on dense fluids that require moleci
dynamics (MD) for their correct treatment. Previous work on hybrid techniques for der
fluids is limited to the technique by O’Connel and Thompson [5]. Their technique, howev
does not decouple timescales and a simple estimate shows that for a given problem i
be O(100) times slower than the present technique which decouples timescales. Times
decoupling is discussed in Section 1.3. Some discussion on hybrid techniques for s
mechanics can be found in [1, 6].

When molecular dynamics provides the molecular modeling, only very small regions ¢
be treated; the potential savings from the use of a hybrid technique in this case can be ¢
mous. However, a problem is amenable to simulation by hybrid techniques only if the reg
that requires treament by MD is localized and of small spatial extent such that its simulat
by MD is feasible. An example of such a problem is the moving contact-line problem [8,
It has long been concluded that the correct treatment of the moving contact-line prob
requires modeling at the atomistic scale; the main obstacle to the successful contin
simulation of this problem is the inability to approximate with continuum equations t
molecular dynamics governing the continuum behavior of the contact line. The author
shown [10] that the microscale treatment required can be limited to distances of a few mo
ular diameters from the contact line, thus providing a good example for the application
a hybrid technigue. We will use this problem as an example throughout this paper.

1.2. The Hybrid Coupling Method

The hybrid technique used in this paper is a modified version of the general mett
presented in [6] and its origins can be traced to the domain decomposition technique kn
as the Schwarz alternating method. Although this technique can be applied to an arbit
number of subdomains, in what follows we assume that we have one MD and one contint
subdomain. Lengthscale decoupling is achieved through the use of an overlap region a
which the continuum and molecular subdomains exchange information; it is, of cour
assumed that both descriptions are valid in that region. The Schwarz technique isinherer
steady-state solution method; infact, thisis the reasonitis able to decouple timescales as
as lengthscales. Transient problems are treated quasistatically: a series of Schwarz itere
is performed, one for each time step. Timescale decoupling is discussed in Section 1.:

Iterative convergence to a (quasi-)steady solution is achieved through an alternatini
eration betweesteady-statsolutions in the two subdomains. If we denote the continuur
and molecular subdomains &g, and2mer, respectively, witH ¢, andl'yg their respec-
tive boundaries, the iteration proceeds as follonsteady-statsolution in the continuum
subdomain subject to “external” boundary conditiong gg excluding(CeontN 2mor), and
“iterative” boundary conditions oFi¢contN 2mel from the previous solution i€y, provides
new “iterative” boundary conditions 0f¢ontN 'mor fOr a new solution inQme subject
also to “external” boundary conditions dl,o excluding(I'moi N Rcony)- This iteration pro-
cedure continues until the solution in the overlap region is the same in both subdom:
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which means that fluxes=(transport coefficientsy (gradients)) are matched (under the
assumption of matched transport coefficients in the two subdomains). The first solutic
Qcont CAN be a guess or an approximate solution if available. Starting from solutions ¢
to the exact one will, in general, reduce the number of iterations required but the techr
is expected to converge from solutions arbitrarily far from the exact solution [11].

The author has previously [6] pointed out some issues related to a general hybrid |
continuum simulation framework: these include the scaling relation between the MD don
data noise and domain sizes, the accurate imposition of Dirichlet boundary conditions
the role of the overlap region as a relaxation region for the non-equilibrium distribut
function, and the extension of the Schwarz framework to treat complex fluid mech:
cal phenomena such as the moving contact-line problem. These issues are revisite
discussed below.

The first issue is related to the statistical nature of molecular dynamics: the neec
adequate signal-to-noise ratio in every MD simulation usually results in unrealistic:
large gradients in the very small simulation domain. This, in turn, sets a limit on the siz
the continuum computational domain since such gradients cannot persist over macros
distances. In other words, although a matching technique can be devised that can col
molecular dynamics simulation domain to an arbitrarily large continuum domain, in or
for a problem to be feasible, it would have to exhibit gradients that exceed the valué of
by usually a few orders of magnitude and decay fast enough into the continuum regic
as not to lead to diverging field variables (for example, a velocity gradient’cf t@ver a
distance 61 m results in a velocity that exceeds the speed of light!). It would seem that t
issue can never be fully addressed, but only alleviated by the use of increased computa
resources, thus seriously limiting the applicability of any hybrid technique irrespective
its ability to couple the various subdomains successflully. The author has indicated in [6
use of dynamical similarity to overcome this problem: in situations that non-dimensio
governing parameters do not place conflicting requirements, the molecular simulatior
be performed on a dynamically and geometrically similar system with smaller character
dimensionsd) and higher characteristic field variables scales, such as velogjtyp(give
a higher signal-to-noise ratio. As an example, consider a flow which is characterise
the Reynolds number (Re pvd/u) only: this is an ideal situation because Re can be ke
constant by increasingand at the same time decreasthghus increasing the gradients (
in the flow proportionally to the square of the characteristic velogjty ¢/d o< v?). Care
must be taken in ensuring that this procedure does not change the relative importan
other controlling parameters which would lead to introduction of effects that are not pre:
in the original model, such as viscous heating and shear thinning.

The second issue arises because of the non-local nature of fluxes (shear stress, he:
which as such are almost impossible to impose in a molecular dynamics simulation.
expect that successful matching of two solutions in two different subdomains implies
matching of these fluxes across the subdomain boundaries. This was most often cit
the major difficulty in obtaining a hybrid MD—continuum simulation technique [12]. Tt
hybrid solution framework proposed by the author [6] overcomes this problem by provid
an iterative technique that ensures that fluxes are correctly matched through the impo:
of Dirichlet boundary conditions which are significantly easier to impose. Although t
author has reported [6] some error resulting from the method used to impose the Diric
boundary conditions in MD simulations, this issue is not as important and it is the auth
belief that it can be reasonably easily rectified.
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The hybrid technique used here exhibits favorable convergence characteristics; the
vergence rate depends primarily on the size of the overlap region relative to the sma
of the subdomains. As a result, an overlap region of the size of the molecular only reg
(2mor excluding2me N Lcony) leads to a fast converging iteration irrespective of the size c
the continuum domain which can be up to a few orders of magnitude larger (subject to
first issue discussed above). Convergence can be proven for elliptic problems [11], an
shown in Section 4, more efficient algorithms can be designed based on these converg
characteristics.

1.3. Timescale Decoupling and Transient Problems

The Schwarz alternating method was chosen for its ability to decouple timescales as
as lengthscales. The majority of previous work has been focused on the coupling of
direct simulation Monte Carlo (DSMC) to a continuum description. This choice, howev:
does not bring to surface two important obstacles in the way of obtaining a fully gene
hybrid description: the first obstacle is the imposition of fluxes which is not an issue in t
DSMC (kinetic theory) framework because of the absence of interaction between molecu
the second obstacle is the decoupling of timescales, which is not as serious a limitatio
the DSMC case due to the similarity of the timescales between DSMC and continu
formulations. It does, however, set an upper limit in the maximum scale separation that
be achieved even in the DSMC-continuum case.

More specifically, the molecular dynamics integration timestg ) is a small fraction

of the molecular collision frequendy.). These characteristic times are much shorter tha
the hydrodynamic timescale of any systémy), even for systems with a very small number
of molecules. As a result, macroscopic phenomena evolving on macroscopic timesc
cannot be captured nytechnique that has an integration timescale of the ordey®f
(such as a hybrid technique that does not decouple timescales), because of the enor
number of time steps required. As an example, consider a three-dimensional systel
characteristic size~ 10-%m. The hydrodynamic scale for this system (assuming incorm
pressible, low-speed flow) g ~ 74 ~1?/v; here we have assumed that the Reynolds numbe
Re=1t4/1i = vl /v is of order one, wherey is the momentum diffusion timescalg,is the
inertial timescaley is the kinematic viscosity, andis a characteristic velocity. If we take
v~10""m?/s, it follows thatt, ~10~°s or equivalentlyr, ~ 10°ryp, which is already
out of reach of most computers, even if we assume that through a hybrid technique we
only required to cover a small region of the original domain by MD (say~ 108 m).
In DSMC the integration timescalgsuc > tvp; In a sense DSMC achieves a form of
timescale decoupling by “coarse-graining” the molecular description up to the level of 1
hydrodynamic regime. As a result, the above limitations are less restrictive for the c
of a DSMC-continuum technique. Furthermore, the computational efficiency of DSM
(compared to MD) results in hybrid formulations which can approach the micrometer sc
[7] before the separation of timescales seriously affects them.

Timescale decoupling is achieved here by treating steady-state problems in an imp
sense: the steady solution is obtained by an iteration sequence that has no temporal inte
tation (much like a Gauss—Seidel iteration) and taR¢%0) steps. Time-varying problems
require one Schwarz iteration per time step during which the solution is treated as ste
Using our example above, the numerical integration of a problem with characteris
timescaler, ~ 10> s will require an integration timescatér ~ 10~ s. This, however,
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is very long compared to the characteristic time of the MD regigm ~ 1Zp/v~10°s
and hence a quasistatic treatment of the molecular region is justified. The technique
sented is thus not limited to steady-state problems.

1.4. Paper Overview

As remarked above, this paper focuses on the extension of the hybrid technique to
a realistic example that is both a challenging test for the hybrid framework and of pract
importance and interest. The description of the moving contact-line example problem
molecular simulation of the same problem which provides the exact solution for compar
purposes but also provides the molecular part of the hybrid solution, and the contini
simulation technique used are presented in the next section; the hybrid formulation
its results are presented in Section 3, various numerical considerations are discus:s
Section 4, and some concluding remarks are given in Section 5.

2. THE MOVING CONTACT-LINE PROBLEM

2.1. Problem Description

In this paper we study a simple version of the moving contact-line problem. Consider
two static immiscible but otherwise identical fluids (same dengijyand viscosity(i)) in
a two-dimensional channel: the meniscus that separates the two fluids will adopt a s
that balances the capillary stresses with the pressure difference between the two f
subject to the (static) contact-angle boundary condition. We next permit the two fluid
move. In particular, we consider the problem in which one fluid displaces the other fl
at a constant interface (average fluid displacement) speddhis movement is a result of
boundary forcing which takes place at the expense of a pressure drop along the direct
motion, or a result of an external field (such as gravity) acting along the direction of moti
The meniscus shape will now further distort due to the stresses created by the flowing 1
the interface shape is an unknown and must be determined with the flow field by solt
of a non-linear set of coupled partial differential equations. The problems of interest
are limited to the case of small Reynolds number=RdJ H/u « 1, and small capillary
number, Ca= uU/y <0.1; herep is the densityH is the channel half-widthy is the
dynamic viscosity, angr is the assumed-constant coefficient of surface tension betwe
the two fluids.

It is convenient to study this problem in the reference frame of the moving interface (
Fig. 1): in this reference frame the interface does not move, and the walls of the cha
move with speed-U (whereU is the speed with which the interface advances in the lab
ratory frame) in the streamwise direction.

The numerical solution of this problem presents various challenges, both numerical
theoretical, mainly due to the insufficient understanding of the dynamics of the contact
(point H in Fig. 1). The conflicting requirements of the no-slip condition, which requir
the fluid in contact with the wall to acquire the wall velocityd) in the direction along
the wall, and the so-called kinematic condition, which requires no net mass flux thro
a two-fluid interface and thus zero fluid velocity in the streamwise direction at the con
point, leads to a logarithmic stress singularity at the contact point [8]. This singularit)
relieved in numerical treatments through the introduction of slip models with adjusts
parameters that are, however, ad hoc. The value of the contactéeagie (dynamic in the
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FIG. 1. Schematic of the moving contact-line example problem. Welusedenote the various boundaries
of the system. The system is symmetric about the channel centEglind he two-fluid interfacel(y) is denoted
GH, where H is the contact point (two-dimensional projection of the contact line). The two fluid domains
denoted” andQ®.

case of a moving wall) as a function of the wall velocity is another unknown. This angle
required as a boundary condition for the integration of the governing equations of moti
Agreement with experiments can be obtained by using the value of the dynamic con
angle and the slip parameters as adjustable parameters. This, however, is not satisfa
from a theoretical point of view which requires a model of the contact-line dynamics
be predictive. The complex molecular-kinetic contact-line dynamics can be adequa
captured by molecular simulations [9, 10, 12-14]. We thus propose a hybrid solution
the problem with the region close to the walls, regidlViCD in Fig. 2, being treated by
molecular dynamics, and region ABU” in Fig. 2 being treated by continuum theory. Note
that LU'U”L” is an overlap region where both descriptions are assumed to be valid.
The objective of this study is the evaluation of the ability of the hybrid technique propos
in [6] to capture the complex multi-dimensional dynamics of multi-fluid flows. The contac
line problem is a very stringent test for our technique; the resulting flow field is extreme
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FIG. 2. Hybrid formulation geometry showing the molecular region boundiagy= L'U’ and the continuum
region boundary o =L"U".

complex and requires the ability to simulate flows with a component normal to the interf
between the two subdomains (molecular and continuum). The results of our hybrid solt
technique are compared to a fully molecular solution on the same geometry which is t:
to be the exact solution. The computational domain size is small enough so that it ca
treated by molecular dynamics in its entirety. As a result the hybrid geometry invol
continuum regions that are of size comparable to the molecular regions, and thus nc
computational gain is obtained.

2.2. Molecular Dynamics Simulations

We describe here the MD simulation of the immiscible fluid displacement problem.
channel geometry (length and width ZH) is shown in Fig. 3. Note that in the molec-
ular simulations the symmetry about the channel centerline is utilized in a different v
compared to continuum techniques because symmetry boundary conditions are diffic
impose in MD simulations. The simulation domain covers the full channel width and
extra simulation cost is offset by the number of statistical data obtained. Additionally, ac
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FIG. 3. Problem geometry for the MD simulation, is the interaction cutoff length. Wall molecules are
denoted byx, fluid A molecules by open circles, and fluid B molecules by solid circles (not to correct density f
clarity).

for reasons of computational convenience, periodic boundary conditions are applied in
streamwise direction, which is allowable because of the interchangeability of fluids A anc

Unless otherwise stated, all quantities will be expressed in reduced unitsusing, =
3.4 A for length,m=ma, =40 amu for masss/ky = ear/ky = 119.8°K for temperature,
andt = (mo?/48)Y2=3.112x 1012 s for time. Herek, is Boltzmann’s constantya,
andea, are the parameters of the Lennard-Jones (LJ) potential for argomizbis the
mass of the argon atom, amds the characteristic time for argon. The interaction potentia
was truncated at the rather conservative cutoff length3o. The simulation box is a fully
periodic MD domain of sizéL x D x W) = (57.05¢ x 5.560 x 15.2%) in thex, y, and
z directions, respectively.

The molecular model for the two fluids is the same as in [9, 14]; the argon molecules
divided into two subspecies: subspecies A and B. These two subspecies (1280 mole«
each) are completely identical because they have the same self-interactions and interac
with the walls of the system; they are, however, immiscible because the potential interac
between them is repulsive. More specifically, the potential used in this study,

Vij (1) = 4eij [(ai /T)*? = 8(aij /T)®], 1)

wherer is the separation of the two interacting molecules, is a modified [9] form of tt
well-known Lennard—Jones potentidke 1). For the interaction between subspecies A ant
B, § = —1, for all other pairs of interactions= 1.



HYBRID ATOMISTIC-CONTINUUM FORMULATIONS 253

The above fluid characteristics were “constructed” for reasons of computational simj
ity but also ease of matching of the molecular system properties with the continuum sy
properties. In continuum terms the behavior of the above molecular system is equivale
that of two fluids with the same density and viscosity (equal to bulk values for liquid argc
the fluids, however, are immiscible with a surface tension coeffigiamich can be calcu-
lated from molecular techniques: at the temperatilire-(L.4) and density 4 = 0.815 3)
of the simulationy = 3.9+ 0.2¢ /02 [14]. More importantly, the two fluids interact with
the two bounding walls in exactly the same way, and therefore the static contact angl
symmetry arguments, has to equat.90

The fairly repulsive potential interaction between the two fluids results in a gap of
order of Ir between the two fluids. More realistic potentials, or alternatively the simulati
of a fluid and its vapor, would result in significantly more diffuse interfaces that wot
require modeling assumptions for the exact definition of their locations. We thus prefe
this slightly artificial interaction which we believe does not affect the generality of ¢
conclusions since the surface tension associated with it can be calculated.

Each of the two parallel, isothermal walls bounding the fluids is modeled by 600 w
molecules arranged in doc two-layer structure in th&—y plane. The wall densityhy, is
equal to the fluid density;. The outer of the two layers is constrained to move with veloci
—U in thex direction and the molecules composing it do not have thermal velocities. T
inner layer obeys the usual Newtonian equations of motion but its temperature is res
in order for it to act as an energy sink and allow the simulation to reach a steady r
equilibrium state by effectively imposing temperature boundary conditions on the fl
argon. Similar models have been shown [13] to adequately capture the dynamics of v
fluid interactions. The combined thickness (alongzk@ection) of the two walls is greater
than the interaction potential cutoff.] such that

2H — W > rq,

and thus the fluid molecules do not see their images across the walls (see Fig. 3).
wall (W) and wall-fluid (WF) potential parameters ang, = 2ma,, ew = Sear, Ow = Oar,
ewr = 1.03¢ar, andowr = 1.0304,. They do not represent any known solid material. The
were chosen as a good compromise between the requirements of minimum number o
molecules, a melting point that exceeds the highest temperature encountered durir
simulation, minimum layering of the argon molecules close to the walls, and minimum
length. The width of the chann@H) is determined by the average location of the first laye
of wall molecules (Fig. 3). However, the volume occupied by the fluid is less due to
finite repulsive core of the interaction potential between the walls and the fluid. We der
the thickness of the “fluid region” byR, whereH = 1.16B.

After an equilibration period of 64Q samples are taken for a further 220 he flow
field is recovered by averaging the instantaneous molecular velocities in rectangular
spanning the—z plane. The size of the bins is4Bs along thex direction and 153¢ along
the z direction. The resulting statistical errors for the velocity are expected to be less
0.00% /7.

The flow field (Fig. 4) is generated by forcing the fluid into the Poiseuille parabo
profile far away from the two-fluid interface. We have ensured that the distance betw
the two two-fluid interfaces is greater thak 6L > 10H), such that the assumption of a
Poiseuille profile is valid; various studies [16, 17] have verified that the flow field relaxe:
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FIG. 4. Flow field for Poiseuille configuration. Both walls move with velocity) = —0.017 /.

the above profile at distances greater thart2fom the interface. The Poiseuille profile

is a zero-mass-flux profile because the simulation takes place in the reference frame o
moving interface. The velocity profile was imposed through the method developed in

and is discussed in Section 2.2.1.

Due to the periodic boundary conditions in the streamwise direction there are two tv
fluid interfaces; in one, fluid A advances into fluid B and in the other, fluid B advances ir
fluid A. Because the gap between the two fluids is not constant but varies as a functiol
z, we defined each two-fluid interface using two lines: each line represents the envelop
the average extreme excursions of one fluid in the streamwise direction. For example, a
interface where fluid A is advancing into fluid B, one line represents the mean maximi
excursion of fluid A and the other line represents the mean minimum excursion of fluid
In Fig. 5 we retain both lines to indicate the molecular interface shape, but we reduce tl
gap at the centerline of the channel to zero, to facilitate comparison of both their rela
curvatures as well as with the continuum results. Note that the two lines diverge clos:

3.15

3.05

295

z
0.9B

FIG. 5. The two-fluid interface shapes for different Ca. Advancing fluid fronts are shown as solid lines a
receding fluid fronts as dashed lines. The channel centerlineis at
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the wall, indicating that the accommodation of the shearing from the wall requires the
between the two fluids to increase. This is clearly a molecular phenomenon that cann
captured by a continuum simulation.

2.2.1. Boundary Condition ImpositionThe imposition of boundary conditions on MD
simulations is essential to the success of a hybrid technigue. Although boundary condi
are only required oy in the hybrid case, we used our boundary condition impositic
technique for forcing the parabolic velocity profile in the streamwise direction for both
fully molecular and the hybrid computations. In the case of the fully molecular soluti
we ensured that the flow field is consistent with previous reports of similar work, by cc
paring the results of the above method with results obtained using gravity as the dri
force for the fluid motion [13]. We also performed “in-house” comparisons using gravity
the driving force for the flow: the results of the two simulation methods for the same v
velocity (U) are indistinguishable within the statistical accuracy of the simulations [18]

In the case of the imposition of the Poiseuille profile across the channel width the te
nique utilizes thin (thicknesa ~ 1¢) regions, denoted momentum reservoirs (Fig. 6
surrounding the Dirichlet boundaries in which the velocity of the molecule is set to"

Momentum Reservoir RB 0] 0] 0]
B
/_\
U U
Al
Momentum Reservoir RA I
A
/’_\
B

FIG. 6. Flow field imposition method. Particles in reservoirs RA and RB of thicknesare forced to a
velocity boundary conditiom = vy, depending on their position The averagel is equal to zero (no net mass
flux) in this particular problem.
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requisite boundary condition through the use of biased Maxwellian distributions [18]

3/2
f(v) — <m> / exp<_(v_vb(:(x))2) . (2)
277 Kp Toe(X) 2K The(X)

Herevpc(X) is the requisite velocity boundary conditioh(x) is the requisite temperature
boundary condition. These regions have a finite thickness, so that the boundary cond
imposition provides information about the local field variable gradients in addition to tl
information about the local field variables; this addition partially offsets the error associa
with the use of the approximate Maxwellian distribution due to the incomplete knowled
of the dense fluid non-equilibrium distribution function. The use of the dense hard sph
Enskog correction [19] is under investigation.

The technique also requires regions called particle reservoirs through which the fluid
flow to and from the various boundary regions such that the correct feed of molecule
supplied to the simulation region in order for mass conservation to be honored. Any clo
(or periodic) extension (for dicussion of limitations see [18]) of the simulation domain c:
serve as a particle reservoir.

The periodicity of the solution renders the particle reservoirs unnecessary. This is be
illustrated in Fig. 6: the complete domain can be seen as two simulation domains
described in Fig. 2) joined back to back, taking advantage of the interchangeability of fl
A and B to dispense with the particle reservoir. Momentum reservoir RA, for examp
induces inflow to the top half of the simulation, but also outflow to the bottom half of tf
simulation; subsequently, each simulation half can be viewed as the particle reservoir o
complementary remaining half.

2.3. The Finite Element Technique

The continuum part of the hybrid solution comes from an isoparametric finite eleme
discretization of the Stokes equations [16]

3‘5”'

=0, 3
3Xj ( )
oU;

o 4
ral 4)

which are the appropriate low-speed (Re€4, Re= pU H/u) limits of the governing
Navier—Stokes equations [21]. Herg is the stress tensor amé=1, 2, 3 corresponds to
directionsx, y, andz, respectively. The simulation was performed in the Stokes limit sinc
the Weber number (We ReCa= pU?H/y) that measures the effect of the inertia forces
with respect to the capillary forces was always less than 0.02. Previous work [20, Z
both analytical and computational, indicates that for a Weber number of 0.01 the erro
neglecting the inertial terms is less than 1%. Recall that the error associated with the
procedure is estimated to be 5-10%.

The solution of this problem is challenging because the two-fluid interface shape couj
non-linearly to the flow field through the following stress balance:

fi (zijlre — @ijlra)Aj = y& onTy, 5)

fi (zijlre — @ijlra)fj =0 onT. (6)
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Here i, andf; are the right-handed outward unit normal and tangent on the interf:
I, TE=TyNQB andT# =Ty N QA, and« is the curvature. The variational form of this
boundary condition, obtained by Ruschak [22], has been used here to obtain a variatio
consistent finite element approximation.

The remaining boundary conditions are

dxs(0)
=0 7
ds \ (7)

dxs(S)
= cosf 8
s (8)

for the contact angle and

u,=0 onl'ag, a7, ey 9
ux =Ug, onla. 7, My, (10)
oxz =0 onl'ag, (11)
Ux = (Ump)x, oNnTcont (12)
u; = (UMD)Z, on 1—‘cont (13)

for the flow field. Heres is the arc length coordinate along such thats=0 ands=S
correspond to points G and’tbn Iy, respectively;" is the union oflag, [gy’, Curr,
andT s 7; Xs(2) is the two-fluid interface position as a functionmfuyp is the Dirichlet
data from the molecular dynamics simulation; a@rid the parabolic zero-mass-flux profile,
9 =3-3(H>

An algorithm that makes use of the importance of surface tension fer@ato converge
rapidly to the steady-state solution [18] was also developed. The algorithm is based
modified form of Eq. (5),

fi (7ij Ire — @ijIra)Aj — vk = yi(AX)  onTy, (14)

wherek (AX) is the curvature correction required to balance (5). This equation takes
vantage of the fact that only the correct steady-state solution can satisfy both condi
required at the interface, namely (5) which is the normal momentum balance, and

ﬁi u =0, (15)

which is also known as the kinematic condition.

Based onthis observation [16], the following iterative procedure can be applied: (i) a gt
interface shape is assumed; (ii) the Stokes problem subject to the boundary conditions
above and the kinematic condition on the fixed interface shape provides a flow field solu
(iii) the residual of (5) gives a correction displacemetk(z)) by solving (14); and (iv) the
interface is updated to the new shape based on the correction displactri@nt Steps
(i—(iv) are repeated to convergence. For€a.1 this procedure converges to the correc
solution in less than five iterations. The full details of the algorithm, the solvability isst
resulting from the application of the kinematic condition, and the variational formulatic
can be found in [18].
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The continuum solver requires an angle boundary condition for the point where the t
fluid interface meet§'¢ont (point H'); it, of course, requires one at point G which is always
90° by symmetry. The angle boundary conditions are of the natural form, and are a re
of the weak formulation of the governing equations [18]. The angle at pdirg elvaluated
by averaging the shape of the interface in the molecular solution and extracting its sl
atH’.

The discretization uses an isoparametric finite element solver with a structured mesh
is refined to mesh sizes at least one order of magnitude smaller than the slip length c
to point H’ for complete resolution of the angle imposition. We have used the Crouzei
Raviart elements, which can correctly capture the pressure discontinuity at the two-fl
interface because they allow pressure discontinuities across element edges. More deta
the finite element methodology can be found in [18].

3. HYBRID SOLUTION

3.1. Formulation

In the hybrid solution presented in this section we use the ingredients presentes
Sections 2.2 and 2.3; namely, we use MD to describe regiofdD and continuum fluid
mechanics (finite elements) to describe region ABU We compare this solution to the
fully molecular solution of Section 2.2.

The channel dimensions favored the extension of the molecular region to the full char
length (up ta'sc andI"ap); slip was important in approximately 50% of the channel lengtt
which was large enough to make the addition of a continuum region in the streamw
direction impracticable. This, of course, will not be the case for macroscopic problems
which slip is limited to very small fractions of the channel length.

Our approach to this problem is an extension of the Schwarz technique presented ir
and Section 1.2: the continuum solution from the previous iteration provides new bound
conditions for the molecular simulation on the boundary of the lattéy' @& '), which
lies well within the continuum domain (thickness of the overlap regi@d2B); the new
molecular solution in turn provides a new set of boundary conditions for the continut
simulation on the boundary of the latter’(l” = I'cony), Which lies inside the molecular
domain. This completes one full iteration. Figure 7 shows the molecular d&aig@which
serve as boundary conditions for the continuum simulation. Because of the statistical ne
of the MD data the velocity profiles are smoothed before being passed to the contint
simulation. The smoothing is achieved through a low-order (fifth-order) fit. The simulati
is isothermal and hence the energy equation is not considered in the continuum dorr
the boundary data exchanged are limited to flow velocities and the angle of the interf
at H’ which enters the continuum calculation as a natural boundary condition [18]. T
molecular calculation does not require angle information. Convergence obtains when
two solutions are identical throughout the overlap region.

The velocity boundary conditions in the MD simulations are imposebi I'yc, and
I'L'p using momentum reservoirs discussed in Section 2.2.1. RegiorlABtJused as a
particle reservoir [18]; that is, during the molecular simulations it is part of the simulatic
domain although the solution in this region is now a complement of the molecular solutior
interestinregion LJ’CD. Region ABUL’ ensures that the right number of molecules of type
A are injected into region'H'HD through face [H' to satisfy the inflow boundary condition
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(ump)/U vs. /L (ump)./U vs. z/L

0.25 0.05

FIG. 7. Molecular data o', is used as boundary conditions for the continuum simulation. The solid lir
represents the actual data, and the dashed line, the fit used to impose the data. Angle information atigoin
also used.

on this face, and similarly the right number of molecules of type B are absorbed from re
H'U’CH to satisfy the outflow boundary condition on fac&JH To prove this, recall that in
steady elliptic incompressible problems (where the Mach number is negligibly small c
pared to 1) the net mass flux through any closed region is zero. The imposition of zero:
mass-flux boundary conditions thus forces the correct “particle feed flow field” in the part
reservoirs with inflow/outflow regions in contact with the respective outflow/inflow regio
of the simulation region, since the individual net mass flux both of the reservoir regions
of the simulation region is zero. In the above example the flux through fadeatsorbed
by the particle region is balanced (to achieve zero net mass flux) by the outflow through
BU’; aclose examination of the flow field in Fig. 4 indicates that the outflow through fate E
returns (due to the periodicity of the solution) to the simulation region through fa&¢dJ
complete the no-net-mass-flux requirement for the simulation region.

The normal velocity profiles were corrected for mass continuity before being passed t
continuum domain by requiring that the net mass flux of each fluid through the contint
domain equals zero. For example, for fluid A we require

- wn Joe (USRS, dE = [, Ugdl
(ugd), = (ups' ), — == fAZu i AL . (16)

As in Section 2.3(uyp), denotes the normal boundary data from the molecular dynam
simulation on the portion df.oncindicated, andlg denotes the zero-net-mass-flux boundar
condition on sectionEgc andl'ap.
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FIG. 8. Comparison of the fully molecular (dashed) and hybrid (solid) interface shape fel0@Q&9.

3.2. Results

We now present the results of the hybrid formulation for a capillary number ef @859.

In this problem we have chosen the fully continuum solution fo=@a059 presented in
Fig. 5 as the initial guess solution. This choice significantly reduces the computatio
effort required since the starting solution is close to the exact (fully molecular) soluti
and therefore a few iterations will suffice to obtain complete convergence. The issue
convergence of the modified Schwarz technique from initial guess solutions arbitrarily
from the exact solution is left as the subject of future work.

Figure 8 shows the results obtained after two iterations. We can see that the results &
very good agreement with the corresponding fully molecular results. Note that the hyk
interface shape consists of a single line in the continuum subdomain up to gantHwo
lines in the molecular domain. The molecular solution and the molecular part of the hyk
solution consist of two lines as discussed in Section 2.2.

4. EFFICIENCY CONSIDERATIONS

The computational work associated with a hybrid solution can, to a very good apprc
mation, be attributed to the molecular part; for each iteration the continuum iterate typice
takes two orders of magnitude less computational time than the molecular iterate. In w
follows we will neglect the computational cost of the continuum solutions in order to sir
plify our investigation, which aims at minimizing the computational cost of the comple
hybrid solution.

Convergence can be proven for a large class of problems when both subdomains
treated by continuum methods [11]. In particular, elliptic problems, such as those tree
in this paper, are amenable to analysis which yields useful results: convergence exhib
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power law behavior of the form
n+1 — KSn, (17)

whereK is a positive constant (8 K < 1) which governs the convergence rate arglthe
error in the appropriate norm [11] amdis the iteration number. The constaftdepends
on the particular problem at hand through the governing operator eigenvalues [11], but
on the size of the overlap region: the larger the overlap region, the srialerand hence
the faster the convergence.

Convergence should also be obtained for a hybrid description if the continuum
molecular models are equivalent in the overlap region. However, additional “steady-st
errors will arise in the hybrid case due to, first, discrepancies in the transport coeffici
in the two subdomains, second, noise introduced by MD statistical fluctuations, and tl
smoothing of the MD data prior to imposition of the boundary conditions on the continu
iterate. The convergencate may also be affected by these new sources of error.

If we neglect the continuum cost of the solution we can easily express the total cos
work W) of the hybrid solution as

No
W = work per MD time step) _ N;, (18)
i=1
whereng is the total number of iterations amd is the number of molecular dynamics time
steps run at iteration The expected error in a field quantity from the MD itefiategiven by

(19)

where A is a constant (for a given simulation) that can easily be estimated [15, 18].
would like to know how the error in the initial stages of the iteration propagates, ac
mulates, and affects the final error present at convergence; if the effect of the error de
sufficiently fast we can design a “schedule” for the number of MD time steps as a functio
the iteration number such that initial MD simulations are run to low accuracy, thus reduc
the computational cost.

Under the above assumption of Gaussian statistics we model the convergence proc
as a stochastically forced decay process leading to a governing equation [18]

o Ke" e, (20)

which has the general solution

7
N

" KNIl 4 KNe (21)
i

Il
o

We will now look for the error behavior as a function of the iteration number. We introdu
statistics in an ensemble sense, that is,

= lim i Z ep, (22)
and
13 2
Var(e") = II_r)noo M Z (e —&")%, (23)
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wherek=1, ..., M — oo are the different realizations of similar systems characterized k
(20). Using
1 M
— i n__
e = l\/|||—>oo M kg,l e =0 vn, (24)

(@)= @)

and
Var(e%) = 0, (26)

it can easily be shown that

np—1 no—1 2
A
. 27
N;j 27)

Var(e™) = 3~ KX DVar(el) = Y T KHD
j=0 j=0

Also note that we have assumed that the cross-correlation terms in the ensemble <
(iMoo 15 Sopes €Ren ;. ] #0) go to zero.

We have verified the validity of the above equations with humerical simulations. /
ensemble of 1000 members all obeying the difference equation (20) was simulated u
a Gaussian generator to model the stochastic error term. The results (see [18]) verify
correctness of the equations derived above: the mean value of the error decays as i
unforced case, and the expected error (associated with one standard deviation) is ¢
by (27).

We therefore seek the optimal scheduling of the number of molecular dynamics time st
as a function of the iteration nhumbar), by also allowing the total number of iterations
(no) to vary, subject to the constraint of a desired simulation accuracy. We can pose
constraint as

KMgl 4 o (") = B, (28)

where in doing so, we have associated one standard deviation of the stochastic:frart ¢
to the expected error and added that to the error atdligeration due to the deterministic
part (K™¢%), and required that it equé.

We form the Lagrangian

No np—1 . A2
L= Nj+xr| Ko+ ZKZ(”‘l‘”W—B (29)
j=1 j=0 J

which can be differentiated for the determination of the extrema. These are obtained fc

A2 K—l_ Kno—l
T (B—Kmwg0)2 K-1-1

N; Kno=2=1) (30)

that is, for a givemng the optimum work is achieved fo¥; o Kno—1-i,
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We will now seek the optimumg by substituting the expression we have foundNgr
into (18) and finding for whictmg a minimum is obtained. The expression for the cost is

A2 K—l_Kno—l 2
W:(B—Kn080)2< T ) . (31)

Note that this expression is singular fBr= K™¢® because an infinite number of time
steps are required for the stochastic term to go to zero sucBtisdbalanced only by the
initial condition decay term. We can look for minima fag > In B/In K (¢° = 1) because
the branchg < In B/In K corresponds to the negative value of the square root in (29) ¢
represents the case for whi¢B — K™% < 0. Forng>In B/In K, W is monotonically
decreasing and this indicates that the optimum is obtaineshfer occ.

Since an infinite number of iterations is impossible, we show here that this infinity
be replaced by a suitably large number with a very small effect on the work savir
We illustrate this with a numerical example: usiBg=0.3,e°=1, K=0.1, andA=1
we needny =25 for o =const=0.1. This translates to a total work & =2500 (in
arbitrary units). Using the scheme derived above (30) wite: 81 we find that the error
decays to the target value of 0.3, but the work is ndix=1112.1. Additionally we can
use (31) to findW(ng — oo) = 11111 which shows that less thanl0% is lost by taking
no =81, but also that a factor of 2.5 in savings is obtained through the use of the opti
scheduling technigue. Figure 9 shows numerical results obtained by a stochastic simul:
the results verify the theoretical predictions of (30). The work was also evaluated dire

& |a & b
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FIG.9. Numerical simulation of (20) subject to the scheduling of (30) Btk 0.3, °=1, K =0.1, A=1,
andn, =81. The results are ensemble (1000 members) averaged @nithe iteration number. The solid line
shows that™ decays like the unforced case, whereas the dashed liness8hbw(¢"). Panel (a) shows the full
results 6 =0-100), and Panel (b) focuses=£ 60—100) on the crossoveB = K"0gl + g (™)) atn =ny = 81.
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from the stochastic simulation and found to equal the theoretical valWg €f1112.1.
Further numerical experiments indicate thatBas> O this scheduling technique becomes
more effective with gains exceeding the value of 3.

5. CONCLUDING REMARKS

From the results of Section 3 we can conclude that the hybrid technique developed
capture the dynamics of complex multi-fluid fluid mechanical phenomena. Our curr
results indicate that the modified Schwarz method for two fluids converges from init
conditions close to the final result. Future work includes further simulations to establ
the (expected) unconditional convergence of the iteration from arbitrary initial interfa
shapes.

Additional work is required for the development of a more accurate boundary conditi
imposition technique as this ultimately limits the accuracy of the results of a hybrid sin
lation. In one-dimensional problems it can be shown [18] that the error due to the bounc
condition imposition is suppressed by a factor monotonically increasing with the width
the overlap region. Unfortunately no such result exists for the two-dimensional case, .
the results of [6] suggest that the boundary condition error might be amplified and resul
inaccurate hybrid solutions. In this work the presence of the full channel minimizes the el
in the final solution; despite this further work is required to reduce the error in imposil
general boundary conditions in MD simulations.

Figure 7 shows that the molecular velocity data are appreciably noisy. The solut
for the interface shape is fairly insensitive to this noise, as the good agreement of
hybrid result with the fully molecular solution indicates. There may be, however, classe:s
problems that are not so insensitive and hence, more attention needs to be paid to the
of the statistical nature of MD to hybrid solution frameworks. As discussed in Section
because of the statistical nature of MD the convergence of the iteration procedure ne
to be examined in a statistical framework. The accuracy and the convergence rate of
hybrid solution may be adversely affected; the use of an elementary smoothing techn
(low-order fit) has been shown to work fairly effectively but its full effect is not completel
understood.

The simulation presented in this work was at the molecular scale; the continuum dorr
was of the same size (approximately) as the molecular domain. This approach was prefe
over a solution where the continuum domain would be substatially larger than the mol
ular domain because at this stage we were interested in a direct comparison betwee
hybrid solution and the fully molecular solution that yields important information about tt
accuracy of the hybrid technique. In fact, the molecular model used here has no real-w
analogue and hence no meaningful comparison to any macroscopic solution or experir
tal data can be expected. Additionally, the extension to macroscopic problems present
additional challenges, but rather some improvements of the current technique that ca
reasonably easily effected. A full macroscopic simulation is currently under investigatic
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